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George said they both weighed the same. 

 
This is a brief (or at more brief than the one posted on the CooperToons 

Department of Education webpage) proof that the number of counting numbers (1, 2, 3, 4, 
... ) is the same as the number of integers ( ..., -3, -2, -1, 0, 1, 2, 3, ... ).  The proof avoids any 
prerequisites other than elementary algebra and knowledge of the basics of proof by 
induction.  If the reader is not familiar with proof by induction or would like a refresher, 
visit the more detailed proof at 
http://www.coopertoons.com/education/countingintegers/cantorcountingintegers.html 



Disclaimer: Although CooperToons 
believes the proof given below is 
complete and correct, he can accept 
no responsibility if it does not pass 
muster of a teacher who had 
something else in mind.  
  
Proof Outline 
 
The proof is based on the ability to 
arrange the counting numbers in a 
definite sequence.  Although the figure 
below is not a proof, it illustrates the 
arrangement that we will define 
mathematically and prove it works for 
all counting numbers and integers. 

1   0 

2   -1  
3    1  
4   -2  
5    2  
6   -3  
7    3  
  .    

  .    

  .    

 
This theorem was first proven by Georg Cantor (pronounced “GAY-org” but the 

English equivalent “George” is acceptable for our purposes) though not exactly as shown 
here.  The proof by induction will require a demonstration that there is a function, f, whose 
domain is the counting numbers and which maps the counting numbers to the integers.  
The function must produce the alternating pattern above.  It must be bijective,  that is each 
counting number, n, is paired with a unique integer. 
 

First the properties of the function will be stated.  Next, a single function will be 
proposed that produces the alternating pattern required.  Then the function will be 
simplified by dividing it into separate equations that work for odd and even number 
separately.  The odd counting numbers will produce zero and the positive integers, and the 
even counting number will produce negative integers.  This separation of the function will 
simplify the induction part of the proof. 

 



1.  If n = 1, then f(n) = 0.    Next as we move to successive odd counting 
numbers,  the value of the f(n) increases by one. In other words, for any odd 
number, n, then 
 

f(n+2) = f(n) + 1  
Or alternatively 

f(n+2) - f(n) = 1  
 
 This insures that the odd counting numbers produce zero and all positive integers 
without repetition. 
 
2. If n = 2, then f(2) = -1. Then as we move to the next even counting number the 
value of the f(n) decreases by one.  
 

Then we know that 
 

f(n+2) = f(n) - 1  
or its equivalent 

f(n+2) - f(n) = -1  
 

is true. 
 

So all even counting numbers will generate all the negative integers.  
 

Because each successive counting number maps either to zero or a 
counting number to a unique integer, the function pairs every counting number 
to a unique integer. Retranslated into plain English, this means there are as 
many counting numbers as integers. 
 

Specifically, the proof will proceed as follows. 
 
1. We will propose a function that fulfills the above requirements for some 
specific values of the counting numbers beginning with n = 1. 
 
2. Next we will simplify the function by separating it into two equations, one for 
odd counting numbers and the other for even numbers. 
 
3. Finally we will prove that if f(n) maps a counting number to a positive or 
negative integer respectively, then f(n + 2) is the next positive or negative integer, 
respectively. This will insure that if the general function, f(n), is either an positive 
or negative integer for a counting number n, then the value of f(n + 1), will be of 
the proper alternating pattern required to generate all integers. 



The Final Function 
 
 The proposed function is: 

 
This formula correctly generates 

the first integers required when n = 1, 
2, 3. 
 

 That is, if n = 1, then  

 
And if n = 2,  

 
 



 
For n - 3 

 
For induction, only the relations between n = 1,2,3 and the integers, 0, -1, 

and 1 are needed for the first step.   But if you keep this up for a few more 
numbers, you find the correct pairing continues. 
 

f(1) =  0  
f(2) = -1  
f(3) =  1  
f(4) = -2  
f(5) =  2  
f(6) = -3  
f(7) =  3  

 
So the formula does set up the correct one-to-one correspondence with the 

lowest counting numbers and the appropriate integers. 
 
The equation can now be separated into two functions specifically for the 

odd or even numbers.  
 
Because by the law of exponents if n is odd  
 

(-1)(n-1) = 1 and (-1)n =-1 
 
 
then 



 
On the other hand if n is even  
 

(-1)(n-1) = -1 and (-1)n =1 
 

and 
 

 
 

The counting numbers and their relationships to the positive and negative 
integers can now be demonstrated. 

 
Since we have already shown the equation works for some specific values 

of counting numbers, we only have to prove the inductive part of the proof. 
 

That is, for odd numbers we have to show 



 
f(n + 2) - f(n) = 1 

And sure enough: 

 
For even numbers we have to prove 
 

f(n + 2) - f(n) = -1 
and indeed 

 
 
Conclusion 
 

So what have we shown? Well, exactly what we said we needed. 
 

We have shown that the function  

 
1. Has a value 0 if n = 1 and increases sequentially by 1 for all odd numbers. 
 
2. Has a value of -1 if n = 2. It decreases sequentially by 1 for each even number.  



 
Therefore f(n) will generate all integers if n is restricted to the counting numbers. 

This proves there is a 1:1 correspondence between the integers and counting numbers. The 
two sets are therefore the same size, or as George put, they share the same cardinality. The 

size or cardinality of a countable infinity, George called the first transfinite cardinal 

number, aleph-null, or  . 
 

So there really are as many integers as counting numbers. 
 
So George was right after all. 
 
How about that? 
 
 
Addendum 
 

Of course, George didn't stop here.  He not only used his famous diagonal argument  
to prove that the number of real numbers  greater  than the counting numbers, but he also - 
and in some ways this was even more amazing - showed that the number  rational numbers  
- that is, the fractions - were the same as the number of counting numbers.  This latter 
conclusion is by no means intuitive since you can pick two rationals and squeeze any 
number of other rationals between them (something you cannot do for counting numbers 
or integers).  The proof, though, is more involved, but is pretty slick and still follows from 
the rules of induction and simple algebra  
 

But that, perhaps, will be another story 
  

 
George and the Rationals: Another Story?	  


